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A modified topological index 2 G is proposed to be defined as 

[N/21 

2~ = y~ (-  1)ka2k 
k - 0  

for characterising the u-electronic system of a conjugated hydrocarbon G with N carbon atoms, where 
a2k is the coefficient of the characteristic polynomial of G defined as 

N 

Pc(X) = ( -  1) N det IA - XEI = ~ akX N-k 
k - 0  

with an adjacency matrix A and the unit matrix E. 
2 G is identical to Z~ for a tree graph, or a chain hydrocarbon. Z G increases with a (4n + 2)-membered 

ring formation and decreases with a 4n-membered ring formation. The total ~z-electron energy E~ of 
the Hiickel molecular orbital is shown to be related with 2 G as E~ = Cln 2 G. With this relation gener- 
alised and extended Htickel rules for predicting the stability of an arbitrary network are proved. 
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1. Introduction 

In the early stage of the development of chemistry, the structural formula has 
played a significant role as a chemical language and sometimes as the basis of the 
chemical logic. This topological aspect of chemistry has gradually been over- 
whelmed by more quantitative measurements and calculations. However, a 
number of the graph-theoretical techniques have recently been shown to be 
applied to chemical problems and have revived the topological studies, especially 
in organic chemistry [1-5]. In despite of the scepticism of many rigorous theo- 
reticians the topological methods have exhibited a strong descriptive and pre- 
dictive power in many areas of organic chemistry. Particularly, it is possible to 
predict a number of physical and chemical properties both of saturated [6 10] 
and conjugated hydrocarbons [4, 11, 12] through several graph-theoretical 
countings, e.g., the number of the Kekul6 structures [13-17J, the values of topo- 
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logical indices [6-8], and the coefficients of the secular polynomial of molecular 
orbitals [16, 18-22]. Many empirical rules whichhave never been proved by 
rigorous treatments were shown to be true by the topological studies with as few 
assumptions as possible [7]. 

In this paper a quantity 2, modified topological index, is proposed for estimat- 
ing the total u-electron energy E, of the Hfickel molecular orbitals of unsaturated 
hydrocarbons and with this index a generalised and extended Hiickel rule, or a 
stability criterion for an arbitrary network, is proved. Before presenting the 
theory proposed, let us give a short summary of the graph-theoretical definitions 
and theorems relevant to this problem [23]. 

2. Premises 

Graph G, non-adjacent number p(G, k), topological index Zc, and character- 
istic polynomial Pc(X) have been defined [-6, 18] and tabulated [24, 25J elsewhere. 
However, Pc(X) is chosen here as 

Pc(X) = ( -  1) N det IA - XEI ,  (1) 

which is related to the Hfickel molecular orbitals through the relation 

x = (~ - ~) / /~ .  

For the later discussion let us divide Pc(X) into two parts as 

(2) 

Pc(X) = Sc(X ) + At (X)  

x N - 2 k - 1  1 
m-1 

= a2k xN-2k-{-  2 a 2 k + l  
k=O k=O 

(3) 

For an alternant hydrocarbon [26, 27] we have 

Cl2k+ 1 = 0 f o r  a l l  k 

o r  

Ac(X  ) - O, 

and the sign of the coefficient a2k alternates 

(4) 

(4') 

( -  1)k a2k >= O . (5) 

There have been a number of attempts to relate the coefficients of the charac- 
teristic polynomial with the topology of a graph [6, 16, 18-22, 28-31]. In this 
paper the approach by the topological index [6, 18] will be developed. For a tree 
graph the coefficients of the characteristic polynomial are directly related with 
the p(G, k) numbers as [6] 

P~(X) = ~ ( -  1)kp(G, k)X N- 2k . (6) 
k=O 

1 m = IN/2], the largest integer not  exceeding N/2. 
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Correction terms are necessary for a non-tree graph [18] z 

Pc(X) = ~ ( -  1)kp(G, k)X N-2k 
k=o (7) 

r t l  i 

+ ~ ~ (--2)r~(--1)kp(GORi, k)XU-"'-Zk. 
RInG k=O 

Let Ri be a ring or a set of disjoint rings in G. The numbers of the points and rings 
in R i are, respectively, ni and rz. Graph G Q R i is the subgraph of G obtained from 
G by deleting Ri together with all the lines incident to Ri. The first summation in 
the second terms runs over all the rings and all the possible combinations of 
disjoint rings in G. Examples for using Eq. (7) will be given later. 

Through Eqs. (6) and (7) the topological index is potentially related to the 
Hfickel molecular orbitals. This relationship is more compactly but implicitly 
stated in the Sachs' theorem [19, 21]. which, however, will not be treated here. 

3. Relation between the Total n-Electron Energy and the Characteristic Polynomial 

In what follows let us confine ourselves to unsaturated hydrocarbons (alternant 
and non-alternant) with even number (N = 2m) of carbon atoms, and study their 
~-electronic structures of the ground state by the Hfickel molecular orbital 
method. According to Coulson and Longuet-Higgins [32, 33] the total ~-electron 
energy 

E,~ = 2 ~" X k 3 (8) 
k = l  

is expressed as an integral form on the complex plane, 

1 zP;(  ) 
E,~= ~ pc(z ) N dz, (9) 

where the path of integration 7 is the imaginary axis from ~ i  to - ~ i  and the 
infinite semi-circle to the right of the y-axis. For a molecule with an NBMO 
path 7 should be changed so as to detour the origin [33]. 

Since the integration over the infinite semi-circle is vanished we have 

E~ = - -  N d y .  (10) 
7z _ r PG(iy) 

It is clear from the above discussion that we had better exclude the following 
three classes of molecules: 

Class t) molecule like I whose highest occupied molecular orbital (HOMO) 
is anti-bonding. 

Class 2) molecule like II whose lowest unoccupied molecular orbital (LUMO) 
is bonding. 

2 Note the difference in the definition of P~(X) adopted in the original paper [18]. 
3 Xk is to be numbered in the decreasing order. 
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Class 3) molecule with an NBMO or NBMO's. 

I 1T 

If one divides Pc(X) into two parts as in Eq. (3), SG(X ) and A6(X) will respec- 
tively be even and odd functions with respect to X, namely 

s d -  x )  = s~(x)  

Aa( -  X) = - AG(X ) . 

The opposite is true for their first derivatives, 

S ' d -  X)= - S'~(X) 
t t Aa( -  X) = A~(X). 

With the relations (11) and (12) the integral (10) is expressed as 

2 ~[ iy{SG(iy)S'~(iy)--AG(iy)A'~(iY)} ]dy. E,~=-- N -  
zc 0 {SG(iy)} 2 -  {Ao(iY)} 2 

(11) 

(12) 

(13) 

For an alternant hydrocarbon the term AG(iy ) vanishes [see Eq. (4')] and we get 

E~= 2 ~ {N iy-jS'~(iY)-~dy. (14) 
rc o SG(iy) J 

Let us show that even for a non-alternant hydrocarbon Eq. (14) is approximately 
true, unless it has an NBMO. For smaller values of y the term a2,, predominates 
in SG(iy), making the value ]S~(iy)[ larger than IA~(iy)I. For larger values of y 
the highest term, yN, of S~(iy) is larger than that, yN- 1, of Aa (iy). Then the following 
inequality, 

ISG(iy)] > [AG(iy)l , 

is expected for all y to give approximately Eq. (14). This implies that the contribu- 
tion by the odd function AG(X ) to the integration in Eq. (10) is cancelled between 
the two regions ( -  o% 0) and (0, oo). In other words the total re-electron energy of 
a hydrocarbon seems to be mostly determined by the coefficients of the symmetric 
part of the characteristic polynomial. This conjecture will be verified by the 
discussion below. 

4. Definition of the Modified Topological Index 

Define the function q~(X) for graph G as 

qG(X) = ~ (-- 1)kaek xk ,  (15) 
k = O  

where a:k is related with the characteristic polynomial through Eq. (3). For a tree 
graph q~(X) is identical to Q~(X) defined in Ref. [6]. The function S~(X) is related 
with q~ (X) as 

S~(X) = XN qG(-- x -  Z) . (16) 
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Fig. 1. Plots of E~ vs. log 2 for linear polyenes (e), annulenes (C)), and polyacenes (A) 

The modified topological index 2 G is defined as 

2o = %(1) (17) 

= ( - i ) u S 6 ( i )  (18) 

= ~ (--l)kaEk. (19) 
k=0 

These definitions and relations (15)-09) can also be applied to molecules with 
odd number of carbon atoms. 

For an alternant hydrocarbon one gets a simpler expression as 

2 6 = ~ [a2k[, (alternant hydrocarbon) (20) 
k=0 

by noticing the relation (5). 
For a tree, or a chain hydrocarbon, 2 G is identical to ZG, i.e., 

2 6 = Z G (tree). (21) 

General expressions of the 2 6 values for certain series of compounds can be 
obtained by using recursion formulae [6, 8, 18, 34]. Analysis shows that asymp- 
totically the E~ values are linearly related to the logarithms of 2 G for the following 
series [17]: 

E~ 6.092 log 2~ + 0.129 (linear polyene), (22) 

E~ = 6.092 log 2NO (annulene), (23) 

E~ = 6.041 log 2 , .  + 0.242 (polyacene), (24) 

where N, N ~ and n*, respectively, denote a linear polyene with N carbon atoms, 
an annulene with N carbon atoms, and a polyacene with n hexagons linearly 
connected. Actually in Fig. I all the plots of E~ against log 2 G for these conjugated 
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Table 1. Characteristic quantities of conjugated hydrocarbons with six carbon atoms 

No." G ak b 2 c Z a E ,  e A Z f 

k = 2  3 4 5 6 

1 0 -7 -2 ii 2 -4 23 21 8.390 2 

2 0 -6 9 -4 20 18 8.000 2 

3 ~ -7 7 -1 16 22 7.657 -6 

4 ~--= -6 -2 8 4 -i 16 16 7.550 0 

5 ~ -6 8 -2 -i 16 16 7.466 0 

6 ~ -6 -2 7 2 -i 15 15 7.418 0 

7 ~ -6 -2 6 -I 14 14 7.301 0 

8 ~ <  -6 5 -i 13 15 7.208 -2 

9 ~ -5 6 -1 13 19 6.988 0 

10 ~ -5 5 -i 12 12 6.899 0 

ii 0 -8 -4 12 8 21 25 8.293 -4 

12 @ -7 9 -4 17 21 " 7.565 v4 

13 @~--- -6 6 13 17 6.603 -4 

14 ~ -6 5 12 14 6.472 -2 

15 , ~  -5 5 ii ii 6,155 0 

16 ~ -5 4 10 10 6.000 0 

17 H -7 -4 ii 12 3 16 20 8.293 -4 

" Compounds 11-16 belong to Class 3 and 17 (=  I) belongs to Class 1. 
6 

b p c ( x ) =  ~, akX6-k, with a 0 = 1 and a 1 = 0  for all the graphs. 
k = 0  

c ~ =  ~ (_ 1)ka2k, Eq. (19). 
k = 0  

d Tabulated in Refs. [24] and [25], where the signs of the odd terms, a2k+l, are inverted, due to the 
different definition of PG(X) = det [A + XEI. 

e E~= ~, gkXk . For 1-12, 91 =g2 =93 = 2  and g4=g5 =96 =0.  For t6 91 =92 =2,  03 =g4 = 1, and 
k = l  

g s = g 6  =0.  For 17 91 =92 = 2  and 9 3 = g 4 = g s  =96=0. 
f Aromaticity index, Eq. (27). 

hydrocarbons lie on a single straight line. It was observed that for almost typical 
alternant hydrocarbons with moderate number of carbon atoms the relation 

E~ = C In 2 ~  (25) 

holds fairly well. 
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Fig. 2. Plots of E~ vs. log 2 for the conjugated hydrocarbons with six ~-electrons. �9 : Class 1, �9 : Class 3 

Figure 2 gives the plots of E~ vs. log 2 G for almost all the isomers of alternant 
and non-alternant hydrocarbons with six carbon atoms including molecules of 
Classes 1-3 4, without which all the points lie on a straight line. In order to keep 
consistency between the energy expression (8) and the contour ~ in the integral 
(9) E~ value of the dication instead of the neutral molecule was plotted for molecule 
17 (in Table 1), or I, which has two bonding and four anti-bonding orbitals (Class 1), 
A number  of molecules have been tested similarly and we can safely conclude that 
the re-electron stability of a conjugated hydrocarbon is determined by the topology 
of the molecule through Eq. (25); the constant being different for molecules with 
and without NBMO's .  This  good correlation proves that the coefficients of S~(X) 
determines the total energy E~ through Eq. (14) or its transformed form, 

4 oo q~(X 2) d X  (26) 
E,~ = T ! qG(X 2) " 

Numerical  analysis shows that Eq. (25) is a good approximation to Eq. (26) [173. 

5. Aromaticity Index 

In order to analyse the relation (25) the coefficients of the characteristic 
polynomial  and the values of E~, ZG, and Z G for the molecules in Fig. 2 are com- 
pared in Table 1. Correlation between E~ and Z~ is not so good but improved by 
modifying Z G into Z G. Note  that molecules without a ring and those with only 
one odd-membered ring have common values for 2 G and ZG, or in other words, 
the increment 

A Z G = 2~  - Z G (27) 

is zero 5. On the other hand, a (4n + 2)-membered ring gives a positive increment 
and a 4n-membered ring a negative one. 

4 In this group there is no entry in Class 2. 
5 Molecule t has one triangle and one pentagon. Molecule 11 has two triangles and two pentagons. 

Molecule 12 has two pentagons. They all have non-zero AZ G. On the other hand, molecule 4-7 with 
one odd-membered ring have zero A Z G. 



44 Haruo Hosoya et al. 

Table 2. Enumeration of 2 G by using the composition principle 

i Ri GORI ZGeR ' (_ 2)r,(_ j).i/2 A x B 
(A) (B) 

0 0 a <~>b 25 1 25 

1 [] "" 1 -2 -2 

2 @ 0 1 2 2 

a Vacant graph. 
b The original graph G. 

Let us call A ZG as an aromaticity index, as it accounts for the stability of 
aromatic rings. Since the topological index Zo can be enumerated quite easily by 
the use of the composition principles (recursion formulae), the value of Z G and 
the prediction of aromatic stability of a condensed ring system can also be obtained 
by hand calculation if one knows a simple algorithm for getting A ZG. 

6. Generalised and Extended Hiickel Rules 

By the use of Eq. (7) the even function SG(X ) can be expressed in terms of 
non-adjacent numbers as 

S~(X) = ~ ( -  1)kp(G, k )X  N-zk 

k=0 (28) 

+ ~ ( - 2 )  'i ( -1 )kp(G@Ri ,  k )X  N-"i-zk , 
R i e G  k : O  

where the first summation in the second term runs over such Ri that the total 
number, n~, of carbon atoms of an independent ring or a set of independent rings 
is even. By combining Eqs. (18) and (28) we get 

2 G = ~ p(a, k) 
k=O 

e v e n  . i  mi 

+ p(a| (29) 
R i e G  k = 0  

e v e n  ni 

= Z ~ +  ~, ( - 1 ) " ' / 2 ( - 2 ) r ' Z ~ e a , .  
RiEG 

Let us enumerate 2 G for molecule 11 by using Eq. (29). Call graph ! 1 as G and 
write down all the possible independent even-membered rings (R1 and R2) and 
the possible combination (Ra) of disjoint rings with even number of carbon atoms 
in total (see Table 2). For convenience's sake let us call G as G Q R o, where R o is 
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20 + O 

V 
10 z z 2 z 2 

Fig. 3. Relations between the stability of molecules and topological quantities, Z, Z, and AZ, for the 
systems with six ~-electrons. Z creases with a ring closure due to a formation of a new bond (+l). 
Difference in Z (0 among the isomers is due to the difference in the combinatorial factors. A (4n + 2)- 
membered ring gives positive A Z, a 4n-membered ring negative A Z, and odd-membered ring zero A Z 

a vacant graph (r o = n o = 0). Calculate the Z values for all the G @ Ri and add 
them up with the weight ( - 2) r' ( -  1)"'/z. 

The summation of the second term to get 2 G of Eq. (29) can be rewritten 
symbolically as 

R 

AZ G=2 ~ Z~e R 
r = l  

n=4-k+ 2 

R 
- 2  ~, Z~e ~ 

r = l  
n = 4 k  

R 

+ 4  ~ ZGe R 
r=2 

n=4k 

R 

- 4  ~ Z~e  R 
r=2 

n=4k+2 
/! 

+ 8 ~ Z~e  R 
rm3 

n--4k+2 

0 C0 ,  C2~,--. 

[] ,  O , O=0 ' 

A O ,  [ ]~,  A CO, 
m O, OO, 0 0,-" 

AA,  AO, DO, 
OO, D O , ' "  

A A n ,  13 i-1 0 , . . .  

(30) 

Ibis equation shows two important factors governing the 7z-electron stability of 
a ring network, namely, the value of the topological index of subgraph G (9 R and 
the sign given to each term. 

Figure 3 illustrates how the difference in the phase of ring closure, for example, 
of hexatriene, affects the stability of a re-electron network. Since the number of 
bonds is increased by the ring closure, all the topological indices of molecules 2, 4, 
5, and 8 are larger than that of hexatriene (molecule 9). The differences among them 
are caused by the partitioning of double bonds in the molecular network. The 
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aromaticity index of hexagon (molecule 2) is positive, while that of tetragon 
(molecule 8) negative, causing large difference in the g-electron stability of these 
two molecules. Ring closure of odd-membered ring (see molecules 4 and 5) does 
not make Z G and Z G differ. The difference in the stability of molecules 1 and 3 
is largely due to the destabilisation by the two tetragon formation in 3. 

Thus the first two terms of Eq. (30) give the proof for the generalised Htickel 
rule, namely, a re-electron network is stabilised and destabilised additively by a 
closure of a (4n + 2)- and 4n-membered ring in an arbitrary network [-36, 37]. 

The third and fourth terms present an interesting feature of the Hiickel rule 
extended to the system with two disjoint rings. As evident from Eq. (30) one can 
predict that molecules with ring skeleton I (=  17), II, or III are unstable but those 
with IV or V are stable. 

r~  ~Ig ~Z 

The same conclusion on the generalised and extended Hiickel rules can be 
drawn by using the Sachs' theorem [19]. 
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